Math 115
Fall 2018
Lecture 9

$$
\begin{aligned}
& ? a^{2}+1 b^{2}=\mathbb{c}^{2} ? \\
& y=m+2 d=r t
\end{aligned}
$$

Intro to graphing
Rectangular Coordinate SYstem

Points are called ordeved-Pairs

$$
(x, y)
$$

$\begin{array}{rc}\text { ex: } & A(-3,5) \\ & \left.\begin{array}{cc}x & y \\ & B(7,-2)\end{array}\right]\end{array}$

$$
\begin{gathered}
x y \\
C(0,4)
\end{gathered}
$$

$$
\begin{gathered}
D(-2,0) \\
x y
\end{gathered}
$$

Plot $A(5,3), B(0,7)$, and $C(-4,0)$, then draw triangle $A B C$. A is in QI B is on Y-axis
C is on x-axis

Draw the polygon $A B C D$ where $A(2,7)$, $B(-7,3) \quad(C(0,-5)$, and $D(8,0)$;

Polygon is a closed geometric shape

find the area of the triangle $A B C$ with $A(0,0), B(8,4)$, and $C(-3,4)$. Drawing required

$$
\begin{aligned}
& A=\frac{b \cdot h}{2} \\
& h=4 \quad A \\
& \begin{aligned}
& =\frac{11 \cdot 4}{2} \\
& =22 \text { units }
\end{aligned} \text {, }
\end{aligned}
$$

Line segment $\overline{A B}$ connects A to B. Line $\overrightarrow{A B} \quad$ connects and extends from A to B.

Draw $\overline{A B}$ with $A(-4,6)$ and $B(4,-6)$

Draw $\stackrel{\ominus}{A B}$ with $A(-7,-5)$ and $B(0,3)$.

Type of lines:

1) Vertical
2) Horizontal
3) Slant
\qquad

Equation of lines

1) Vertical
2) Horizontal

$$
A x+B y=C
$$

$$
\begin{aligned}
& \quad x=a \\
& x=4, \\
& x=-2
\end{aligned}
$$

$$
\begin{aligned}
& \quad y=b \\
& y=3 \\
& y=-5
\end{aligned}
$$

3) Slant

$$
y=m x+b
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
3 x+2 y=-6
$$

$$
y=\frac{1}{2} x-4, \quad y-3=\frac{-3}{5}(x+2)
$$

Draw $\quad x=4$ \& $y=-3$

$$
\begin{array}{cc}
x \text {-only } & y \text {-only } \\
\text { VIL. } & \text { H.L. }
\end{array}
$$

Draw $x=-5, y=6$, and $y=-2$. Clearly mark any intersection Points. Clearly label all lines.

Vertical $\dot{\varepsilon_{1}}$ Horizontal lines are perpendicular to each other.

Graphing $A x+B y=C$ by intercept method:

$2 x-3 y=12$

x	y
0	-4
6	0

Graph $3 x+4 y=-24$ by intercept method.

$$
\begin{array}{c|c}
x & y \\
\hline 0 & -6 \\
\hline-8,0
\end{array}
$$

Graph $2 x-3 y=-6, y=-4$, and $x=5$ in the same rectangular H.L. V.L. coordinate system.
\rightarrow Slant line

$$
\begin{array}{c|c}
x & y \\
\hline 0 & 2 \\
\hline-3 & 0
\end{array}
$$

Graphing $y=m x+b$ by two-Point method.

1) I has to be isolated.
2) Make a table,

$$
y=\frac{2}{3} x-1
$$

Pick $x=0$, and
$x=$ Denominator of m.

x	y
0	
Δ	

Denominator of m.

Use 2 -Point method to draw

$$
\begin{array}{l|l}
y=\frac{-3}{4} x+3 \\
x & y \\
\hline 0 & 3 \\
\hline 4 & 0
\end{array}
$$

Graph $y=\frac{2}{5} x-4 \quad$ \& $y=\frac{2}{5} x+4$ in the Same rectangular Coordinate Sister.

$$
\begin{array}{c|cc|c}
x & y & x & y \\
\hline 0 & -4 \\
\hline 5 & -2 & 4 \\
\hline 5 & 6
\end{array}
$$

Graph $y=\frac{3}{4} x \quad \varepsilon_{1} \quad y=\frac{-4}{3} x+5$.

$$
\begin{array}{l|ll|l}
x & y & x & y \\
\hline 0 & 0 & & 0 \\
\hline & 5 \\
\hline 4 & 3 & & 1
\end{array}
$$

lines are
Perpendicular.
How? Later

Distance between 2 points

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

ex: Find the distance between $(3,-2)$ \& $(-5,4)$.

$$
\begin{aligned}
d & =\sqrt{(3--5)^{2}+(-2-4)^{2}} \\
& =\sqrt{(3+5)^{2}+(-2-4)^{2}} \\
& =\sqrt{8^{2}+(-6)^{2}}=\sqrt{64+36}=\sqrt{100}=10
\end{aligned}
$$

find the distance from $(3,0)$ to $(0,4)$.

$$
\left.\begin{array}{rl}
d & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(3-0)^{2}+(0-4)^{2}}
\end{array}=\sqrt{3^{2}+(-4)^{2}}\right) ~=\sqrt{9+16}=\sqrt{25}=5
$$

Midpoint of line Segment

$$
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

find the midpoint of $\overline{A B}$ with

$$
\begin{array}{ll}
A(-8,4) & B(10,6) \\
M\left(\frac{x_{1}+x_{2}}{2},\right. & \left.\frac{y_{1}+y_{2}}{2}\right)
\end{array}=M\left(\frac{-8+10}{2}, \frac{4+6}{2}\right)
$$

